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ABSTRACT

Database system designers have traditionally had trou-
ble with the default services and interfaces provided
by operating systems. In recent years, developers and
enthusiasts have increasingly promoted Java as a seri-
ous platform for building data-intensive servers. Java
provides a number of very helpful language features,
as well as a full run-time environment reminiscent of
a traditional operating system. This combination of
features and community support raises the question of
whether Java is better or worse at supporting data-
intensive server software than a traditional operating
system coupled with a weakly-typed language such as
C or C++.

In this paper, we summarize and discuss our experi-
ence building the Telegraph dataflow system in Java.
‘We highlight some of the pleasures of coding with Java,
and some of the pains of coding around Java in or-
der to obtain good performance in a data-intensive
server. For those issues that were painful, we present
concrete suggestions for evolving Java’s interfaces to
better suit serious software systems development. We
believe these experiences can provide insight for other
designers to avoid pitfalls we encountered and to de-
cide if Java is a suitable platform for their system.

1. INTRODUCTION

From the original relational prototypes and onwards,
database system designers have complained about the
interfaces and features provided in popular operating
systems [23]. Over the course of many years, a number
of these interfaces have been changed by the OS ven-
dors — or subverted by the DBMS vendors — in order
to achieve correct behavior and good performance.

In recent years, developers and enthusiasts have in-
creasingly promoted Java as a serious platform for
building data-intensive systems. Among Java’s main
attractions are its programming language features that
speed development and prevent subtle bugs — these in-
clude strict type checking, array bounds checking, and
mandatory exception handling. Also attractive are
Java’s lower-level features including built-in memory
management, convenient I/O and threading libraries,
dynamic linking, built-in synchronization mechanisms,
and support for secure execution of foreign code. In re-
cent years, Java compilers have developed to the point
where they do almost as well as traditional C compilers
in generating efficient code on microbenchmarks [10].
But in addition to traditional user-level code speci-
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fication, a Java platform includes a wirtual machine,
which (as is clear from the description above) provides
many of the abstractions traditionally associated with
an operating system. This combination of features and
community support raises the question of whether the
Java language and platform is better at supporting
database system functionality than a traditional op-
erating system coupled with a weakly-typed language
like C or C++.

We have developed the first version of the Telegraph
adaptive dataflow system, which is intended to form a
basis for data-intensive applications over volatile en-
vironments including sensor networks and the Inter-
net. Along with our first implementation of the ba-
sic Telegraph system, we also built our first prototype
application, which supports OLAP-style queries over
“deep web” data sources [7] via a web screen-scraper,
relational algebra operators, and online aggregation in-
terfaces. We launched out prototype as a public web
service one month before the 2000 Presidential elec-
tion. The system joined Presidential campaign finance
websites with other “deep web” information including
home prices, celebrity lists, neighborhood crime infor-
mation, and a map server. The prototype attracted
local media attention and was used by thousands of
clients on the Internet.

In choosing a development platform for Telegraph,
we were attracted by Java’s ease of use. We were also
curious to see if it could provide good performance
for a data-intensive system. Our Telegraph prototype
is a departure from a standard DBMS in three ma-
jor respects: it is based on eddies [6] rather than on a
static query optimizer, it is currently read-only with no
transactional support, and it uses pipelining dataflow
operators to support online aggregation. Despite these
distinctions, it does stress the underlying machine ser-
vices in a manner analogous to traditional database
systems. It must handle multiple concurrent users,
it requires careful memory management for efficiency,
and it taxes both the network and disk I/O subsys-
tems. In addition, the prototype was designed as an
extensible framework in which users can register their
own functions and web wrappers.

In this paper we summarize and discuss our ex-
periences with Java’s interfaces and supporting com-
puting environment: core libraries, Java virtual ma-
chine (JVM), and tools. Like earlier critics of oper-
ating system support, we find Java’s support lacking
in a number of respects. Some of these limitations
stem from the familiar problem that narrow, “conve-



nient” interfaces suited to simple programs do not pro-
vide the degree of control needed to make complex,
I/0O intensive software perform well. In other cases,
we found that some of Java’s mechanisms had high
overhead implementations, forcing us to code around
these mechanisms in order to obtain acceptable perfor-
mance. Some of these latter problems were artifacts
of the particular JVM and operating system we used,
others are inherent in Java’s interfaces. Some of these
observations have been noted in other contexts [14],
[11], [25], [24]; however, we are unaware of any work
that collectively presents these ideas in the database
systems context, which has its own needs and pecu-
liarities. In addition to identifying these problems, we
highlight some of the pleasures of coding with Java.
‘We present our results not as an indictment of the Java
platform, but as suggestions for evolving that design
to better suit I/O intensive software systems develop-
ment. Also, we hope these results provide insight for
other developers to avoid pitfalls we encountered and
to determine if Java is the right platform for their sys-
tem.

1.1 Structure of the Paper

In Section 2, we describe the architecture of our ini-
tial Telegraph prototype. In Section 3, we describe
the advantages and drawbacks of the Java memory
management model. Then, in Section 4, we discuss
multi-programming issues in Java and how they im-
pacted the Telegraph design. In Section 5, we describe
how Telegraph leverages Java’s introspection mecha-
nism for UDFs and catalog evolution. Section 6 con-
tains our experiences with the Java core libraries and
development tools. Section 7 highlights pieces in tra-
ditional database systems that might stress Java’s in-
terfaces but were not implemented in the Telegraph
prototype. Section 8 surveys the related work, and
Section 9 concludes.

2. ARCHITECTURE

In this section, we provide a summary of the ini-
tial Telegraph architecture. As mentioned previously,
the first application of Telegraph was to perform inter-
active, read-only queries over web-based sources. To
run these queries efficiently in such volatile environ-
ments, we abandoned the traditional approach of us-
ing a cost-based optimizer and static query processing
engine. Instead, we chose to build the Telegraph pro-
totype using the eddy [6] framework for adaptive query
processing. The Telegraph prototype runs on a single
computer, though shared-nothing parallelism in Tele-
graph is a subject of ongoing research in our group.
Below, we describe the components of the Telegraph
query processor and how they interact.

The principal components of the Telegraph proto-
type query processor are the eddy, dataflow modules
like relational operators, and the queues through which
they communicate. Figure 1 shows an example of a
Telegraph query on two sources R and S. The query
includes an equality join on the b fields of the sources
and selection modules on R.a and S.c.

Unlike a static query plan, the modules in an eddy
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Figure 1: A query on two sources R and S in
Telegraph. Modules are shown in boxes, and
edges represent queues. The eddy routes data
through the modules for computing the query.

are decoupled and work asynchronously. The responsi-
bility of the eddy is to route data from the source wrap-
pers, Wr and Wy, through the appropriate modules
for computing the query, and then send the results to
the output. The eddy makes routing decisions at run-
time on a per-tuple basis based on observed through-
put of the modules. A more detailed discussion of
routing policies for eddies can be found in [6].

The dataflow modules consume data provided by the
eddy on their input queues and return the results of
their computation back to the eddy on their output
queues. These modules can be relational operators
like selection, aggregation, and join, or any arbitrary
user-defined function. In Section 4, we discuss in depth
how modules are scheduled.

Telegraph’s memory organization is also different
from that of a traditional database system. The mem-
ory in Telegraph is divided between the modules’ pri-
vate state and a tuple pool. Because the Telegraph
prototype is targeted at network data streams, it has
no need for a paginated, disk-based buffer pool. In-
stead Telegraph has a single tuple pool for all in-flight
tuples, i.e. the tuples being passed among the queues
and in the eddy. Since variable length tuples are re-
moved and inserted into the tuple pool in an unpre-
dictable order, the tuple pool can become fragmented.
Thus, there is a need for memory compaction. Further-
more, to avoid copies, tuples are passed by reference on
the queues to the modules. Hence, data sharing in the
tuple pool can occur when a tuple is broadcast to mul-
tiple modules. Compaction and data sharing have im-
plications for memory management and synchroniza-
tion mechanisms discussed in the next sections.

We store the data for each tuple in a Java byte-
array, and marshal the tuple’s fields into its native
Java type on every field access. This design decision
is a result of Telegraph’s need for tighter control over



memory management. More detail on this topic is also
presented in the next section.

To conclude, we illustrate the life of a tuple as it
is created from the wrappers and its travels through
the modules. This process is similar to the way a tra-
ditional query processor flows data through a query
plan. First, a wrapper must convert raw text data
from a web-source into a formatted byte-array in the
eddy tuple pool, and place a handle to the byte-array
on its output queue. The eddy receives a handle to a
tuple from a wrapper, say Wg, through the wrapper’s
output queue, and can pass the handle to the tuple to
any one of the modules for R in the query. The module
has several choices: it can deallocate the tuple, it can
make a copy for later use, or it can pass the handle
back to the eddy. The selection module, for example,
may deallocate the tuple if it does not satisfy the pred-
icate, or pass the handle back if it does. The hash join,
on the other hand, would make a private copy of the
tuple and deallocate it from the tuple pool. Once a
tuple has passed through all the necessary modules, it
remains in the tuple pool until copied from the output
to a client.

Our initial Telegraph application was deployed in
September, 2000 at the site http://flf.cs.berkeley.edu/.
The experiments in this paper were performed on a sin-
gle site system running on a dual-processor 667 MHz
Pentium III with Linux 2.2.16. We used the SUN
JDK 1.3 for development, and the Java HotSpot Server
JVM build 1.3.0 as the execution environment.

3. MEMORY MANAGEMENT

3.1 Allocation and Deallocation

The task of a query processing engine is to efficiently
manage the flow of data through modules by using the
available physical memory and disk resources intelli-
gently. Thus, careful memory management is essen-
tial to the performance of a query processor. Over-
utilization of memory can lead to unpredictable and
poor performance from the underlying virtual mem-
ory system, and under-utilization can result in exces-
sive I/O costs. Full utilization of physical memory can
be achieved through tight control over memory opera-
tions.

Most commercial database systems include a special
set of memory management services [13], [15] to facil-
itate this control, while providing some conveniences
as well. A standard technique is to wrap OS mem-
ory allocation routines within specialized server rou-
tines, which allow the caller to “tag” (or “color”) the
memory they allocate, either explicitly or via some
“current-tag” state. This interface makes it possible
to deallocate all memory regions that have a partic-
ular tag'. Support for bulk deallocation on a per-
tag granularity allows for quick, “sloppy” development

'The interested reader is referred to POSTGRES [4]
an open-source example of a DBMS with this facil-
ity. Postgres’ memory manager was used much more
aggressively when the code was commercialized by II-
lustra Information Technologies.

of those portions of a system that are not memory-
sensitive. For example, a query parser can be writ-
ten without worrying about deallocating any memory;
at the end of the parsing phase, the final parse-tree
can be copied to memory allocated with a new tag,
and memory from the old parser tag can be deallo-
cated en masse. In addition to the convenience of
bulk deallocation, commercial DBMS memory man-
agement services often exercise performance-oriented
control over how memory is used, centralizing resource
management logic and hence minimizing bugs and in-
efficiencies. For example, memory allocation per tag
can be limited in application-specific ways — e.g., a par-
ticular query or module might be limited (statically or
dynamically) in the amount of additional memory it
can allocate.

In Java, memory management is handled by the
JVM and the garbage collector. Dynamic allocation is
done on the Java heap, and the garbage collector peri-
odically searches for and deallocates unreferenced ob-
jects. Allocation is performed using the new construct
and deallocation is performed implicitly by dropping
all references to an object. This memory management
interface is excellent for many situations. In fact, it
helped us conveniently manage short-lived local data
structures used by the catalog, queues, wrappers, mod-
ules, eddy, and the query parsing and translation en-
gine. We cannot stress how useful garbage collection
is for avoiding subtle memory leaks. However, this
model simply lacks the control needed to do much of
the work done by a high-throughput query processor.
In particular, it prevents temporal and spatial control
over memory management operations.

Temporal control over memory allocation provides
the ability to invoke deallocation operations immedi-
ately. For example, when a hash join completes one
partition during its probe phase, the memory it con-
sumed can be immediately reused for the next parti-
tion. If the garbage collector postpones collection, the
join will not be able to reuse the memory. Further-
more, it is possible that the next garbage collection
phase may occur during a period of high CPU uti-
lization. The collection process would slow down the
ongoing computation, and it could further hamper it
by destroying cache locality. In short, a garbage col-
lector can reduce throughput if invoked at the wrong
time. Java provides the System.gc() call for invoking
the garbage collector; however, this call only provides
a “best effort” guarantee, and may not affect the re-
gion we are interested in deallocating.

Spatial control over memory allocation provides the
ability to control the amount of physical memory al-
located, to control how it is partitioned, and to con-
trol memory operations on the individual partitions. A
query processor needs to adjust the amount of memory
available to each query and to each query processing
module based on observed data and execution char-
acteristics. The Java API does not allow clients to
explicitly partition memory among modules, nor does
it offer an analog to C’s sizeof interface to determine
how much physical memory is being utilized. Thus,
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Figure 2: Overview of Telegraph memory im-
plementation

a module or query cannot know how much memory
it is using, and hence it can over-allocate memory,
taking away resources from more deserving modules
or queries. Deallocation of specific regions at vari-
ous granularities is also useful for speeding up memory
operations. Again, consider an out-of-core hash join,
which allocates and deallocates main-memory hash-
tables the size of disk partitions. The only memory to
be considered upon deallocation should be the hashtable
partitions. A general purpose garbage collector would
do much more work in searching and identifying un-
referenced regions, thereby reducing throughput. The
lack of control over memory management forced us to
duplicate memory management functionality at user-
level, as we describe next.

3.2 TelegraphMemory Management

To work around the lack of control offered by Java
memory interfaces, we implemented our own manage-
ment scheme. In this section, we outline our scheme
and compare its performance against the Java garbage
collector.

For each query, at startup, we allocate a large Java
byte-array which is then divided among the eddy and
the modules. A portion of this space, called the tu-
ple pool, is allocated for in-flight tuples, and modules
are allocated regions for their private state. For ex-
ample, a hash join would receive a region for its par-
titions. The memory allocation assignments are stati-
cally specified® and parameterized by global variables
much as in other DBMSes[16]. The memory regions
can be subdivided into smaller regions, and dealloca-
tion operations can be performed on individual sub-
regions, or on a region as a whole. The organization of
memory regions for private module state is similar to

2 Adaptive resource allocation in Telegraph is the sub-
ject of ongoing work in our group.

the tuple pool, so we describe the tuple pool in greater
detail.

The tuple pool is a subregion of a query’s byte-array
that holds the data for each tuple (see Figure 2). Each
tuple contains, in addition to its data, meta-data for lo-
cating fields, and a pin count. The pin count is used for
reference counting. When the pin count reaches zero,
the tuple is “deallocated”, i.e. its region is marked free
for later reuse. Upon deallocation, a small fraction of
the memory region is compacted to reduce fragmenta-
tion. A disadvantage of having to managing our own
pin counts is that we are more prone to memory errors
and memory leaks if we forget to pin and unpin.

Each tuple has associated with it a surrogate object.
A surrogate object is a Java object allocated outside
of the tuple pool that holds an offset to the tuple’s
location in the tuple pool. The surrogate object has
several purposes. Its main purpose is to serve as the
monitor object for latching the tuple when modifying
its pin count® and reading its data. The latch is nec-
essary because a tuple may be shared among modules
in different threads. It is these surrogate objects that
are passed to the modules in an eddy. Access to tu-
ple data can only be accomplished through method
calls on the surrogate object preventing accidental or
intentional corruption to other memory regions. To
prevent corruption, accessor methods perform explicit
array bounds checks which are more expensive than
the implicit bounds checks done by the JVM for Java
arrays. We disable these explicit checks for trusted
modules.

If Telegraph left the management of surrogate ob-
jects to Java, then Telegraph would still be susceptible
to the vulnerabilities arising from the lack of tempo-
ral control. To alleviate this problem, we preallocate
surrogate objects, place them in a “free pool”, a col-
lection of objects that can be reused, and recycle them
as necessary.

To gauge the effectiveness of the Telegraph mem-
ory manager, we compared its performance against the
Java garbage collector in a series of experiments. We
executed the probe-phase of a Grace hash join in these
experiments. In the TeleMM experiment, the Tele-
graph memory manager managed all the surrogate ob-
jects, the tuple pool, and the private state of modules.
In the JavaGC experiment, the surrogate objects and
Java byte-arrays for each tuple were allocated on the
Java heap, leaving memory management entirely to
the Java garbage collector. We used the default gener-
ational garbage collector provided with the Sun Java
HotSpot Server JVM 1.3.0.

In these experiments, each partition of the building
relation contained 100,000 tuples. There were a total
of 50 partitions, and each tuple was 100 bytes. Thus,
in the TeleMM experiment, processing each partition
only required a memory region of 10MB for the tuples.
Including the other miscellaneous memory space that
Telegraph and the JVM need, the minimum Java heap

3The Java byte-code specification does not guaran-
tee that its increment and decrement instructions are
atomic.



size that allowed us to run our experiments was 45MB,
a fixed overhead of about 35MB. Also, in these exper-
iments, after processing each partition, the hashtable
was explicitly deallocated, which entailed setting all
entries to null in the JavaGC experiments and calling
the deallocation methods in the TeleMM experiment.
The Grace hash join was running in a single thread,
and our machine has two CPUs, so the Java garbage
collector thread ran in parallel with the join. In the
TeleMM experiment, the memory management rou-
tines did their work in the same thread as the hash
join, and the Java garbage collector sat idle on the
second CPU.

Figure 3 compares the completion time for executing
the entire probe phase in both of these scenarios. The
top curves shows the completion times of the JavaGC
experiments run with various Java heap sizes. The
lower dashed line indicates the completion time of the
TeleMM experiment with a Java heap size of 45 MB.
The TeleMM experiment ran the same at larger heap
sizes because the hash join did not take advantage of
the additional space. At a heap size of 45MB, the
JavaGC experiment took over three times longer to
complete. At around 55MB, where the Java garbage
collector had twice as much space to manage each par-
tition, the JavaGC experiment took about twice as
long as the TeleMM experiment. At large heap sizes,
the performance of the JavaGC experiment approaches
the performance of the TeleMM experiment.

We examined these experiments in further detail to
understand when the Java garbage collector was doing
its work. Figure 4 compares the performance of the
probe phase for each partition of the join. Here, the
Java heap size was set to 80MB in the JavaGC exper-
iment, and 45MB in the TeleMM experiment. We see
the TeleMM experiment performance was consistent
since the join could control the memory operations.
The Java generational garbage collector seems to have
done its work at unpredictable moments. We reran the
JavaGC experiment using the incremental garbage col-
lector provided with the Sun JDK 1.3 release hoping it
would display worse, but more consistent performance.
However, this was not the case.

It is important to note that there are cases when
the Java garbage collector outperforms the Telegraph
memory manager. For example, when we ran a simple
scan and filter query, using only the Java garbage col-
lector for memory management, Telegraph processed
on average 1 x 10° 100-byte tuples per second. Using
the Telegraph memory manager, Telegraph only pro-
cessed on average 5 x 10° tuples per second. We spec-
ulate the difference is because all our memory man-
agement routines suffer the overhead of Java type and
array-bounds checking, and our compaction algorithm
is not as finely tuned as the garbage collector. It would
be interesting if Java allowed us to deactivate these de-
fault security measures in the server for trusted, well-
tested code. This would help us isolate the cause of
the overhead, and help tune our memory management
routines further.

3.3 Memory Management: Conclusions
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Figure 3: A comparison of the performance of
the Java garbage collector versus the Telegraph
memory manager. We ran the entire probe
phase of a Grace hash join. The Java garbage
collector achieves the performance of the Tele-
graph memory manager only at very large heap
sizes.

Database query processing algorithms are designed
around the careful and explicit management of mem-
ory resources. The performance of these algorithms
can suffer enormously if they are unable to manage
memory accurately. Although our experiments only
represent a small sample of garbage collection algo-
rithms for our workload, we believe that the lack of
temporal and spatial control over memory manage-
ment is a fundamental weakness of Java’s transparent
memory allocation model. We are skeptical of any par-
ticular JVM’s implementation of garbage collection in
its ability to accurately predict memory allocation and
reuse patterns for a data-intensive query engine work-
load. However, we do appreciate the convenience of
implicit memory management for a good deal of the
“support code” in a query processor.

Hence it seems worthwhile for Java to provide garbage
collection, enhanced with control interfaces similar to
those found in traditional DBMS memory managers,
including the timing and scope of garbage collection,
and the exposure of accurate metrics of memory uti-
lization. These features would allow sophisticated pro-
grammers to control the behavior of garbage collection,
without sacrificing the other benefits of Java’s memory
management, such as protection and automatic refer-
ence counting.

4. MULTIPROGRAMMING

In this section, we discuss the multiprogramming
issues in Java as they relate to the Telegraph architec-
ture. In our opinion, threading and synchronization
mechanisms are elegantly integrated into the Java pro-
gramming language via its built-in threads, and its
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Figure 4: A comparison of several memory
management alternatives: the Java incremen-
tal garbage collector, the default Java garbage
collector, and the Telegraph memory manager.
During the probe phase of a Grace hash join,
the Telegraph memory manager provides con-
sistent response times for each partition be-
cause we can control when and on which region
it performs work.

monitor-style synchronization. While this does not
necessarily make it easier to debug multi-threaded pro-
grams, it does make it simpler to write them. Fur-
thermore, a multi-threaded program written in Java is
portable to a variety of platforms. Given these positive
aspects, we discuss the drawbacks of Java’s synchro-
nization mechanism, and the scalability limitations of
the threads on our platform. These deficiencies forced
us to make specific decisions for the Telegraph archi-
tecture which we discuss below.

4.1 Synchronization

Monitors[19] are the only synchronization primitive
provided by Java. A monitor can be viewed as a
semaphore and queue associated with an object or a
class. A Java thread will try to acquire a monitor
if it jumps to a synchronized method in the associ-
ated object or reaches a critical section enclosed in an
synchronized block. If the thread fails to acquire the
monitor, it is placed at the end of the queue and blocks
until the monitor is available. Java provides method
calls notify() and notifyAl11() to explicitly wake up
threads waiting for the monitor. As with the garbage
collector, we found that while monitors are sufficient
for most simple programs, they lack functionality, and
are too heavy-weight for Telegraph.

There are three main disadvantages to monitors.
First, there is no option for acquiring Java monitors
conditionally, i.e. acquiring a monitor without block-
ing if it is already held. Second, monitors impose un-
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Table 1: Synchronization Overheads. Time
to invoke synchronized and unsynchronized null-
method call and array copy method call, averaged
over 10000 calls.

Method Avg. Time
Per Call (ms)

Unsynch. Null Function Call 2.2 x 107°

Synch. Null Function Call 1.4 x10*

Unsynch. 10,000 EI. Array Copy | .14

Synch. 10,000 EI. Array Copy .16

due memory overheads. Third, uncontended acquires
and releases can be expensive.

The Telegraph memory manager relies heavily on
synchronization operations and would benefit from con-
ditional semaphores. During compaction, it repeatedly
acquires and releases monitors on tuples that it needs
to copy to a new location. In this scenario, these moni-
tors are used as short-duration semaphores associated
with physical resources, thus serving the same func-
tion as latches [20], [21] in traditional database sys-
tems. If the compaction routine encounters a tuple
that is already latched, then the compaction routine
blocks. To avoid blocking compaction, we are care-
ful to write modules which latch tuples for a short
duration or copy the tuple to private space. Unfor-
tunately, all modules with a handle to an object can
acquire its associated monitor. So, untrusted modules
can latch tuples and block compaction indefinitely as
a form of denial-of-service attack (discussed further in
Section 5). The ability to acquire a monitor condition-
ally would allow the compaction routine to skip the
latched tuple and proceed. The new JDK 1.4 provides
the Thread.hasLock() method to test if a particular
thread already has acquired a monitor. However, us-
ing this for simulating conditional semaphores does not
scale well, because we must call this method for each
potentially conflicting thread. It is possible to build
conditional latches on top of monitors (e.g. by using a
shared boolean variable) but this requires all accesses
to follow a new, agreed upon protocol.

Furthermore, in situations like above, a simple syn-
chronization primitive like compare-and-swap on a sin-
gle byte would suffice. Yet, Java forces the program-
mer to dynamically allocate an object on the heap be-
cause monitors are intimately tied with objects. On
our Java platform, the overhead for an object is 12
bytes, thus each surrogate object, including its 4-byte
offset variable, is 16 bytes, which is paid on a per-tuple
basis. Such an overhead can place undue memory pres-
sures if a large number of semaphores are required.

Finally, the synchronization operations in Java are
relatively expensive. We ran two micro-benchmarks
to test the overhead of synchronized methods. In Ta-
ble 1, we see that for a null function call, the synchro-
nization overhead is a factor of 5, and for a function
call doing a 10,000 element array copy, a substantially
more time-consuming operation, the synchronization
overhead is 14 percent. To understand the impact
of synchronization on our memory management rou-



tines, we ran a query with a simple scan operator which
scanned data from a 10MB file. The scan produced tu-
ples into the tuple pool, and an output operator deal-
located tuples from the tuple pool. We ran the query
using both synchronized and unsynchronized versions
of our memory management routines. The operators
were running in single thread, scheduled by the eddy,
and there was no contention for the tuples. In this ex-
periment, just the overhead of synchronized method
calls in the Telegraph memory management routines
doubled the execution time of scanning a 10MB file.

The memory management routines require only a
simple synchronization primitive such as a test-and-
set or compare-and-swap. Instead, they are forced to
use monitors. Currently, to avoid these overheads, we
are careful to write operators that can be run in the
same thread, or we stage data to modules in different
threads in properly synchronized memory regions. We
are also investigating “lock-free” optimistic algorithms
for memory management.

4.2 Threads

We have noticed that threads on the Linux platform
do not scale well, and others have confirmed this obser-
vation [26], [18]. For example, an experiment reported
in [26] shows that for a workload involving an 8KB
read of a cached-file, our platform can only support 8
concurrent threads at maximum throughput, and at 64
concurrent threads the throughput falls precipitously.
Thus, as were processes in Unix 20 years ago [23],
threads are a precious resource on our platform. Since
Java native threads are essentially Linux threads, the
Telegraph implementation is similarly constrained. As
a result we must be careful about how we write mod-
ules to work with an eddy.

In an eddy, to hide the latency of long-running oper-
ations like fetches from web-based sources, we require
that modules work asynchronously from one another.
Thus, modules written in the traditional iterator inter-
face style must be placed in separate threads to pre-
vent them from blocking the eddy and other modules.
Since threads are a precious resource, and synchro-
nization overheads are high in Java, this approach can
seriously limit the number of concurrent queries Tele-
graph can run on a single machine.

A common solution to this limitation is to multiplex
lightweight user-level threads on top of heavy-weight
threads. However, since Java provides no mechanisms
for implementing a context-switch, we were unable to
build our own user-level thread library. Hence, we sim-
ulated user-level threads by writing our engine in an
event-driven programming style [26], [22].

In this methodology, multiple threads of control are
divided into actions which are triggered by events and
multiplexed within a single thread. In our case, the
eddy and modules share a thread, and the eddy ex-
plicitly schedules modules by calling their process()
routines (i.e. actions) when they have some data (i.e.
events) to process. Because logical threads of control
are decomposed and intermixed in this programming
style, we found both implementation and debugging to
be more complicated than in traditional iterator-style

programming. In the process() routines, we needed
to carefully save the state of the computation by hand
and restore it on subsequent calls. Moreover, we had
to be careful about doing only a bounded amount of
work for each call. In particular, these routines were
not allowed to block on potentially long-running sys-
tem calls, so we dispatched these calls to an external
thread pool.

The need for non-blocking operations raises another
important issue in Java concerning high-latency I/O
requests. Java JDK 1.3 only provides blocking net-
work I/O library calls. Although, we dispatch these
requests to a pool of worker threads, achieving peak
throughput from many web-based sources requires nu-
merous simultaneous outstanding requests. For exam-
ple, from Berkeley, we can achieve a peak through-
put of 0.5 MB/s from the Federal Election Commis-
sion website with 30 simultaneous connections using
custom non-blocking I/O libraries in Java [24]. We
achieved a peak throughput of 5 MB/s from a popu-
lar search-engine using 200 simultaneous connections
before they started dropping our requests. Devot-
ing that many Java threads for non-blocking I/0O is
unreasonable considering the scalability limitations of
threads on our platform. Others [24] also have ob-
served the limitations of Java threads for implementing
non-blocking I/O, and they provide custom implemen-
tations of low-level, non-blocking (NBIO) networking
libraries in Java for Linux. Moreover, the recently re-
leased JDK 1.4 [2] provides low-level APIs for perform-
ing non-blocking I/O from the network and disk. How-
ever, the higher-level HT'TP protocol routines that the
Java core libraries provide remain blocking in JDK 1.4.
The NBIO routines are also incompatible with these
high-level routines. Reimplementing all the high-level
networking library support in Java is a daunting task.

In fairness, other projects building data-intensive
systems have not had such negative experiences with
Java threads. The Mercator [14] project built a cus-
tom crawler in Java for data mining on the web. Using
a custom JVM and proprietary operating system that
can scale to 500 threads per machine, they were able
to run their crawler full-tilt, saturating their incoming
bandwidth with five machines.

Finally, since external user-defined operators can-
not be trusted, Telegraph is forced to devote a thread
to each. The Java threads API no longer supports
the stop(), suspend(), resume() methods, and the
destroy() method is currently unimplemented. This
makes it difficult to kill runaway UDFs. In general, as
noted in the JRes [9] project, Java provides weak CPU
resource control and accounting mechanisms which per-
mits denial-of-service by untrusted code.

4.3 Multipr ogramming: Conclusions

The two multiprogramming issues we discussed in
this section were the drawbacks of synchronization prim-
itives in Java and the techniques we used to circumvent
the scalability limitations of threads on Linux.

Synchronization primitives are essential for many
tasks in database systems and for memory manage-
ment in Telegraph. The correctness and performance



of these algorithms rely heavily on the primitives pro-
vided by the underlying platform. Java provides mon-
itors which are convenient and easy to use, but offer
limited functionality: they do not allow a conditional
acquire. Furthermore, they have unreasonable mem-
ory management overheads. One suggestion would be
for the Java language to incorporate an atomic oper-
ation like “test-and-set” from which database devel-
opers can develop more sophisticated synchronization
primitives to suit their needs. An alternate middle-
ground would be to provide a richer set of inexpensive
acquisition modes for monitors.

Threads are a limited resource on the Linux plat-
form, and the scalability of Java programs is constrained
by the underlying operating system threads package.
Thus, to conserve threads we had to write our engine in
event-driven programming style [26], [22]. We had to
work around Java’s blocking network I/O interfaces by
dispatching these requests to a pool of worker threads.
While this approach was sufficient for the Telegraph
prototype, we learned that achieving peak throughput
from high-latency sources requires numerous outstand-
ing connections. To manage these connections in a
scalable way, we suggest that Java developers include
non-blocking versions of all networking library calls,
especially the high-level ones.

5. INTROSPECTION

Java provides an elegant type introspection mecha-
nism (alternately called reflection in the Java nomen-
clature) with dynamic class loading, which makes in-
stalling new user-defined data sources, wrappers, and
data types very easy.

Introspection combined with dynamic class loading
is both powerful and dangerous. Programs can load
class files, examine their methods, and create instances
of them for use. This has allowed us to easily load and
execute user code for wrappers, and it has allowed us
to simplify catalog evolution. However, it also poses
significant security risks in a distributed environment
where users are allowed to add data types and wrapped
sources, since it is difficult to guarantee that dynami-
cally loaded code is not malicious or buggy.

5.1 UserDefinedFunctions

Java introspection is an excellent general technique
for dynamically loading and installing user defined func-
tions. In the Telegraph project, we are concerned with
allowing users to access a variety of non-traditional
database sources such as web sites, sensors, and func-
tions (UDFs) as though they are standard tables. We
do this by implementing a number of different wrap-
pers. The wrapper for a particular source is stored in
the wrapperid field in the catalog. Wrappers are them-
selves stored in the catalog table WRAPPERS, which, for
each wrapper, names the class file which implements
the wrapper as well as some of its basic properties.
We use the Java class loader to dynamically load the
wrapper for each source, which can contain arbitrary
Java code for parsing the raw data.

This flexibility is very nice, but it does introduce
some significant security concerns, particularly if it is

possible for users outside our database to add wrappers
to the catalog. This is a realistic if one imagines exter-
nal web-site developers providing wrappers for their
sites to our deep-web query engine. The problem is
that such wrappers can act maliciously against Tele-
graph. Unlike in a standard DBMS in which UDFs
run in an entirely separate process, Java can dynam-
ically load and efficiently sandbox UDFs within the
same process to prevent them from executing poten-
tially damaging functions or reading or writing local
files [11]. However, it does not prevent UDF's from con-
suming huge amounts of memory or monopolizing the
CPU. As discussed in [9], the proper solution to this
problem is to build resource tracking and enforcement
mechanisms into the JVM. Until such mechanisms are
widely available, claims that Java’s sandboxing facil-
ity provides adequate security for server-applications
cannot be trusted. Resource tracking mechanisms are
also important to the Eddy for determining how to
dynamically modify the query execution plan.

5.2 Catalog Management

Like most database systems, Telegraph stores the
meta-information describing wrapped sources and their
properties in the catalog. To simplify catalog manage-
ment, we chose to store the Telegraph catalog in XML
format which is parsed according to a description file.
This file, similar to a DTD, describes the schema of the
catalog and includes the column types for catalog ta-
bles. At startup Telegraph uses the Java introspection
facilities to dynamically create the in-memory catalog
data structures and accessors based on the description
file. It then fills in the catalog data from the XML cat-
alog file. This technique allows Telegraph to startup
from any version of the catalog without recompilation.
Hence, catalog evolution is simplified because it is sep-
arated from the software base.

We illustrate our approach with an example. Con-
sider adding a logo field which contains an image to as-
sociate with each source in the catalog. In C or C++,
one would have to either modify the “.h” files contain-
ing the structure corresponding to the TABLES table,
and add a pointer to an image structure. Then a re-
compilation would be necessary to allow the server to
load image files. With our approach, we simply modify
the description file to indicate that the TABLES table
now contains a new field which stores the image data-
type. In Java, with introspection, we can dynamically
load the image class specified by the description file
and instantiate an image object with the data stored
in the catalog.

5.3 Intr ospection: Conclusions

The introspection and dynamic class loading facili-
ties in Java have simplified two typically cumbersome
tasks in traditional database systems: loading and ex-
ecuting UDF's, and catalog evolution. Resource con-
sumption in Java, however, goes unchecked allowing
external code to monopolize resources such as CPU
or memory. To avoid such denial-of-service attacks,
we concur with [9] that Java should provide resource
tracking and enforcement mechanisms.



6. LIBRARIES AND TOOLS

6.1 CoreLibraries

Java provides an extensive set of standard libraries
that make development of substantial applications very
easy. These include networking support, including high
level protocols like HTTP, the Swing GUI develop-
ment environment, and many standard data structures
like hash tables and balanced trees. These libraries,
combined with ease of memory management via the
garbage collector, made it possible for us to build and
deploy a functional web-service in about four months
(twelve man-months) that could handle several thou-
sand complex queries a day without serious problems.
This development effort included both a client-side ap-
plet UI and the query engine itself. Although we were
very satisfied with these APIs, there are a few areas
where the standard libraries need to mature before
Java is truly suitable for developing complex server
and database systems like Telegraph.

6.1.1 OverSyndironization

Most of the Java standard libraries are thread-safe,
because the language designers wanted their data struc-
tures to be usable in multi-threaded programs. Be-
cause synchronization has a large overhead, newer ver-
sions of the Java libraries have introduced copycat ver-
sions of earlier data structures which are not thread-
safe. For example, in the java.util package, the
HashMap and ArrayList data structures are the non-
thread-safe versions of the Hashtable and Vector classes.
Unfortunately, it is not possible to tell from a class
name whether it is thread-safe or not. Thus, initially,
we used many thread-safe versions of library classes
which impaired the performance of uncontended sec-
tions of Telegraph. We do not object to the inclu-
sion of thread-safe libraries; however, we believe that
it should be possible to easily identify a thread-safe or
non-thread-safe version of any class rather than having
to dig through the Java documentation to find it.

Researchers at Compaq have noted other instances
of abusive over-synchronization [14]. For instance, the
class java.util.StringBuffer, which is used for string
concatenation, uses synchronization, even when strings
are being allocated statically. This can have severe
performance impacts on programs. After we first built
Telegraph, profiling revealed that string allocation was
the single most expensive operation we regularly per-
formed. These were mainly due to debugging state-
ments that implicitly created strings. As a workaround,
we introduced a preprocessor in our build scripts that
could remove debugging statements.

6.1.2 AbusiveMemoryAllocation

One problem with Java lies in its tendency to en-
courage object allocation. This is dangerous because
memory allocation takes time and wastes heap space,
and stresses the abilities of the garbage collector. As
noted earlier, each Java object has 12 bytes of stor-
age overhead on our platform. Many of the Java li-
braries are built in such a way as to encourage these
overheads. For instance, the Vector and Hashtable

classes, which one often wants to use to store primi-
tive values like integers, can only store values which
inherit from Object. This implies that whenever an
object is inserted into one of these data structures,
the programmer is required to allocate an additional
12 bytes of storage.

We have already mentioned the string concatena-
tion operator, which creates a StringBuffer implic-
itly when it is used. This case is surprisingly dan-
gerous because concatenation has the illusion of being
a lightweight operator. We wrote a simple for loop,
with a body x = “‘foo’’ + ¢, where = is a string,
and ¢ is the loop index variable (an integer), and +
implies string concatenation. This was an experiment
to test the cost of string concatenation. Java engages
in a remarkable amount of work to execute each pass
through this loop. It allocates five separate objects,
makes seven method calls, three of which are synchro-
nized, and allocates more than 100 bytes of memory.

All of these objects must eventually be garbage col-
lected. Its tempting to believe that the garbage collec-
tor is an all-powerful entity that makes memory allo-
cation and deallocation free. However, as was shown
in our previous discussion of memory management,
garbage collection can take significant amounts of time,
and object allocation consumes both time and valuable
memory storage.

6.2 ToolsSupport

When we first started building Telegraph, there were
very few good public domain development tools on
the Linux platform for debugging, profiling, and op-
timizing Java byte-code. The default Java debugger,
jdb, was itself buggy, and the profiling feature in the
HotSpot JVM 1.3.0 was broken. We relied heavily on
Java features like mandatory exception handling and
human-readable stack traces to perform a good deal
of our debugging. We used the standard System.out
and System.err for the rest of our debugging. We also
achieved some performance optimizations by profiling
Telegraph using previous versions of the JVM.

One reason for the lack of sophisticated tools was
that the Sun JDK 1.3 was just recently released and
there was not much support for it. Over time, we
began to learn of commercial products like VTune [5],
OptimizelT [3], and JInsight [1] for debugging the per-
formance of Java programs. We also learned of tools
like JAX [1] that optimize the byte-code of Java pro-
grams for both size and efficiency. As Java matures
and becomes an integral part of the existing software
code-base in industry, we expect that the development
support for the language will be more widespread and
robust.

6.3 Libraries and Tools: Conclusions

Java library support is extensive and the core li-
braries were instrumental in helping us quickly build
the Telegraph prototype. However, there are a num-
ber of dangers associated with these libraries. If used
indiscriminately, it is easy to write code with over-
heads of excessive synchronization and object alloca-
tion. We suggest that the Java language designers



make an effort to build APIs that clearly reflect the
synchronization overhead, and provide libraries that
avoid excessive object allocation. Moreover, the sup-
port for development tools in Java was limited when
we began building our prototype; thus, we relied on
Java features like exception handling and stack traces
for debugging.

7. OTHER LIMIT ATIONS FORA DBMS

Our initial Telegraph prototype is akin to the query
processing engine in a traditional database system.
Our experiences building the Telegraph prototype have
brought to light many deficiencies of Java in its sup-
port for database development. However, there are a
number of pieces of traditional database systems that
we did not implement in Telegraph which could pos-
sibly stress the Java interfaces further. In this sec-
tion, we speculate on the components of a traditional
database system in which the Java interfaces could be
a limiting factor and briefly describe why.

The Java interfaces provide no method for account-
ing for consumed memory, and provide no spatial and
temporal control. Databases typically have large al-
located regions like the buffer pool and sort buffers
for which they need tight control over the amount of
memory consumed. Many of the problems that arise
with limited spatial and temporal are commonly due
to inefficient reuse of memory. The buffer pool, log
tail, sort buffers, and latch request blocks are com-
mon data structures in which memory is immediately
reused. Thus, the Java garbage collector would per-
form poorly for managing these structures.

Most database systems need to acquire cheap, short-
duration semaphores, latches, associated with a phys-
ical resource. For example, latches associated with
buffer pool pages are typically used in a variety of
places: index concurrency control algorithms, the back-
ground process which writes dirty pages to disk, etc.
Latches gain most of their performance benefits be-
cause they are statically allocated [20]. However, in
Java all synchronization operations are associated with
Java objects, which must be dynamically allocated.

Threads are a limited resource on out platform, and
the Java threads API provides no control over killing
threads. The Thread.destroy() routine is not imple-
mented, and Thread.stop() has been deprecated in
the Java API[2], leaving the responsibility of writing
well-behaved threads to the programmer. Database
servers implemented in a thread-per-transaction model
need the ability to kill threads for aborting transac-
tions, particularly during deadlock which often cannot
be anticipated or avoided. Moreover, database systems
rely on a number of background processes such as the
log flusher, deadlock detector, etc., which all consume
threads, and thus limit the number of available threads
for supporting multiple users.

Finally, until the recently released JDK 1.4, the Java
core libraries provided no interface for forcing indi-
vidual pages of a file to disk. Database write-ahead
logging recovery algorithms [20] rely heavily on this
functionality. The newio libraries in JDK 1.4 provide

an API for mapping files to memory regions, flushing
those regions back to disk, and issuing asynchronous
requests. Still, there is no unmap facility, so a mapped
region cannot be immediately reused, which could lead
to inefficiencies like those exhibited in our join exper-
iment.

8. RELATED WORK

There is a plethora of work in the operating systems
on building better interfaces to suit database develop-
ment, and much work in the database community in
identifying the underlying services and mechanisms re-
quired for building database systems. This literature
is vast, and we refer the interested reader to [23], [12],
[17], [8] as a starting point. Instead we focus on re-
cent work on the convergence of databases and Java,
and recent work on building scalable, server-side, I/O
intensive software in Java. We survey the work that is
most relevant to our discussion.

Cloudscape [27] is a light-weight database built in
Java. They claim one significant advantage of their im-
plementation is that external Java code can run more
efficiently within their database kernel than with other
database systems.

The Predator [11] project evaluated alternatives for
integrating Java UDF's in traditional database systems.
Their conclusion was that Java UDFs are viable in
terms of performance; however, there are other issues
like threading and memory management that make in-
tegration difficult.

JRes is a resource management mechanism for track-
ing resource consumption and enforcing usage con-
straints in Java. In [9], they used JRes to obtain feed-
back on UDFs for dynamic optimization.

Mercator is a project that aims to build infrastruc-
ture for doing “web archaeology”. Their parallel crawler
is written entirely in Java. In [14] they report on
some similar problems to the ones we experienced with
Java’s core libraries, including excessive synchroniza-
tion and heap allocation.

The Berkeley Jaguar [25] system is a JVM enhance-
ment that provides infrastructure for fast communica-
tion of Java objects in a cluster of workstations. This
scheme avoids the overhead of marshaling Java objects
to and from C code through the JNI interface.

The Ninja project is investigating how to build scal-
able internet services. Their code base is entirely in
Java. In SEDA, [26], a component of Ninja, they
are investigating structured event-driven programming
methodologies, analogous to the scheme mentioned here,
for circumventing the scalability problems of threads.

9. CONCLUSION

‘We have completed an initial prototype of the Tele-
graph adaptive dataflow system on the Java platform.
As a guide for the reader, in Table 2 we highlight the
main benefits and drawbacks of Java as they were pre-
sented in each section of the paper.

Java has significant strengths in ease of program-
ming, and in some of its convenient system services.
We particularly benefited from its language features



for exception handling and implicit memory dealloca-
tion — these are invaluable for reducing the kinds of
subtle bugs and memory leaks common in traditional
systems software development. Java’s introspection fa-
cility allowed us to elegantly load user-code and sup-
port catalog evolution. As expected, Java’s security
features were helpful in running user code fairly safely.

In many cases, however, Java provides a less-than-
satisfactory environment for writing high-performance,
I/O-intensive code. Similar to the problems cited in
early operating systems [23], Java hides too many re-
source management decisions behind its narrow inter-
faces. In our case, this meant that either our code
could not control resources in the way we wanted it
to, or we had to awkwardly program around Java’s
interfaces to get control. Java’s memory management
interfaces do not provide the spatial or temporal con-
trol essential for efficient query processing, nor do they
provide the ability to easily measure and control mem-
ory utilization. Java’s sole support for synchronization
is monitors, which are both overly heavyweight and in-
sufficiently function-rich to support our latching needs.
Java’s 1/0 libraries lack the non-blocking APIs neces-
sary to conveniently hide network latencies. In all of
these cases, we had to replicate functionality at the
user level or code around these deficiencies to build a
high-throughput concurrent system.

Some of our difficulties were less fundamental, and
can be attributed to immature implementations which
we expect to be fixed over time. On our (very stan-
dard) Sun JVM and Linux OS, multi-threading is not
very scalable, which forced us into some unusual cod-
ing styles. Debugging and profiling support is not ro-
bust, which often resulted in painful development. A
hodgepodge of tools for code optimization are avail-
able, and different development environments provide
very different tools and features. Java’s built-in li-
braries do a poor job of separating expensive thread-
safe features from cheap but unsafe features.

Many of our more critical problems with Java are
likely to recur in any large systems project, unless
changes are made to the language. A number of re-
source management issues arose from poor interfaces,
and hence will recur regardless of how good new Java
implementations are — i.e. they will arise indepen-
dent of the JVM and OS. Moreover, most of the basic
systems issues we raised are quite universal (memory
management, threading, synchronization), and Java’s
problems will adversely affect any I/O-intensive server.

In sum, our experience building the Telegraph proto-
type in Java was mixed. Java presents some problems
for database system developers that are reminiscent
of those from early operating systems. We proposed
a number of minor but important changes to Java —
particularly with regard to memory management and
synchronization — which would alleviate the worst of
these problems. Despite our criticisms, we were able
to code around most of the problems we found, with
significant effort but tolerable losses in performance.
We believe that Java is on track to becoming a vi-
able server development and deployment environment,

with the potential to provide system developers with
significant benefits over the current state of the art.
We encourage further communication among system
builders and Java designers to speed progress along
this track.
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